

ISSN 2348 - 8034 Impact Factor- 5.070

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES SEISMIC RESPONSE OF RC STRUCTURES USING DIFFERENT TYPES OF DAMPERS

K. Jaya Gayathrri Dhevi^{*1} & Dr. K Rama Mohana Rao²

^{*1}Post Graduate Student, Department of Civil Engineering, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad

²Professor, Department of Civil Engineering, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad

ABSTRACT

In present analysis, high rise RC frame building of G+12 storeys of 39m height is analyzed with and without dampers for different zones and for different dampers. During analysis the Bending Moments, Shear forces, Displacement, and Time periods were found and were compared for various cases. Buildings are modeled and analyzed using standard package ETABS 2016.

I. INTRODUCTION

Earthquake is a disturbance that causes shaking of earth surface due to the movement at underground along fault plane or from volcanic activity. Even though the earthquake lasts for a small duration of time, it causes significant loss of life and damage to property every year. In order to reduce the effect, buildings/structures like public life-line buildings, residential buildings, historical buildings, industrial buildings should be designed to seismic force.

The aim of analysis of earthquake resistant building is that the buildings should be able to resist minor earthquakes without any damage. There are many ways to achieve this. One of it is by providing dampers. Damper is a mechanical system which dissipate earthquake energy into specialized devices which deforms or yield during earthquakes. They enhance energy dissipation in a structure to which they are installed so that the structure has to resist lesser amount of earthquake forces. When the seismic energy is transmitted through them, dampers absorb a part of it and thus damp the motion of building.

The building under consideration in this study is a G+12 storey RCC special moment resistant frame. The schematics of building plan and elevation are shown in figure. The plan is in rectangular shape and measures 16x32 m². The total height of the building is 39 m. All storey heights are 3m. Building is modeled without infill walls. The base is fixed to restrain in all 6 DOFs. To control the seismic response and increase the stiffness, dampers like fluid viscous dampers, viscoelastic dampers, pall friction dampers are provided. Dampers are provided at corners throughout the building. ETABS 2016 has been used to carry out this study.

II. MODELING OF BUILDING

ISSN 2348 - 8034 Impact Factor- 5.070

Fig 1: Plan of building

Fig 2: 3D view of building without dampers

2.1 Geometric details:

- ✓ Plan dimension = $16m \times 32m$
- \checkmark Each storey height = 3m
- ✓ Number of storeys = G+12
- \checkmark Total height of building = 39m

2.2 Material properties:

- ✓ Grade of concrete = M20 for slabs and M25 for beams and columns
- ✓ Grade of steel = Fe500

2.3 Section properties:

- \checkmark Column = 400mm x 400mm
- ✓ Beam = 250mm x 400mm
- ✓ Slab thickness = 125mm (two way slab)

(C)Global Journal Of Engineering Science And Researches

2.4 LOADS:

ISSN 2348 - 8034 Impact Factor- 5.070

While applying the loads to the structure we consider only the external loads which are actually acting on the members neglecting its self-weight because ETABS 2016 automatically takes the members self-weight. Additional dead load is given as 3.2 KN/m² and live load is given as 4 KN/m². The Seismic loads EQ-x and EQ-y are given in Load patterns directly using Code IS1893:2002.

2.5 Seismic properties:

- \checkmark Zone factor = 0.36(zone 5), 0.24(zone4), 0.16(zone 3)
- ✓ Response reduction factor(R) = 5
- ✓ Importance factor(I) = 1
- ✓ Soil type = II
- \checkmark Damping ratio = 0.05

2.6 Seismic load combinations:

Seismic load combinations are taken as per IS 1893 (Part 1): 2002 (in cl.6.3)

2.7 Damping properties:

The dampers have been installed at corners only in the exterior throughout the height of the building. The damper is modeled only along one longitudinal direction and restrained in other two transverse directions, in its local coordinate system. Non-linearity is considered along the active direction U1. Rotation has been restrained. Following values have been used to model the damper.

Fig 3: 3D view of building with viscous dampers friction dampers

ISSN 2348 - 8034 Impact Factor- 5.070

Fig 4:3D view of building with Pall

Fig 5- Fluid viscous damper

The product which has been taken into account for development of FVD model in this study is 67DP1892101type-A damper manufactured by Taylor Devices Inc., USA. It is modeled as a link element with link type damperexponential.

- ✓ Mass = 1700 Kg.
- ✓ Weight = 0.173 KN
- ✓ Effective Stiffness = 20,000 KN/m
- ✓ Effective Damping = 10,000 KN-s/m
- \checkmark Type of damper = Exponential
- \checkmark Velocity exponent = 0.2

Visco elastic damper properties:

MATHEMATICAL MODEL OF VISCOELASTIC DAMPER

When a VEM is under a sinusoidal shear stress $\tau(t)$ with a frequency ω , the shear strain $\gamma(t)$ will lag behind the stress by a phase angle δ as :

20

 $\tau(t) = \tau_0 \sin(\omega t)$ and $\gamma(t) = \sin(\omega t - \delta)$

(1)

(C)Global Journal Of Engineering Science And Researches

ISSN 2348 - 8034 Impact Factor- 5.070

where τ_0 and γ_0 are the stress and strain amplitudes respectively. if the strain is plotted against stress, one will obtain elliptical hysteresis loop.

Visco elastic material is often characterised by storage, G['], and loss, G^{''}, shear moduli to represent the elastic and viscous properties respectively (Lai,1995).the ratio of loss to storage modulus is the loss factor n_0 or so called tangent delta $(\tan \delta)$ which is used along with G['] to describe the material:

 $\eta = G''/G' = \tan \delta$ (2)G' and G" are related to the stress and strain amplitudes G" = $\tau_0 / \gamma_0 \sin \delta$ $G = \tau_0 / \gamma_0 \cos \delta$ and (3)From eqn . 1 and 3, the stress - strain relationship becomes τ (t) = G' γ (t) ± G" $(\gamma_0^2 - \gamma^2(t))^{1/2}$ (4)Which is an ellipse. It is convenient to use complex variables to describe the VEM as $|G^*| = \tau_0 / \gamma_0 = (G^{2} + G^{2})^{-1/2}$ G *= G' + jG''and (5)Where $j = \sqrt{-1}$

In structural and building applications, a viscoelastic damper typically consists of VEM slabs sandwiched between relatively rigid steel plates. The damper configuration is very simple and its operation is straightforward.

The viscoelastic damper can be characterized by storage, K', and loss, K", stiffness and are related to G' and G" as K' = G'A/h, K'' = G''A/h and $\eta = K''/K'$ (6)

Where A is the total shear area and h is the thickness of the VEM slab. An important advantage of the viscoelastic damper that the damper is linearly scaleable as shown in eqn. 6. the property of a large damper can be linearly predicted by testing a much smaller damper as long as the testing strain, temperature and frequency are kept the same. K" can be further related to the viscous damping constant as

 $C = K''/\omega = \eta K'/\omega$

Where ω is the damper operating frequency.

In this study acrylic-based Visco Elastic Material (VEM) designated as 3M brand ISD 110 (K.C.Chang, Y.Y.Lin) is used whose properties are given in table below.

Damper name	3M ISD 110
Type of damper	Exponential
Effective stiffness	17839.01
Effective damping	19808.12

Fig 6 - Visco elastic damper

ISSN 2348 - 8034 Impact Factor- 5.070

> <u>Pall friction damper properties</u>:

Mathematical model of friction dampers:

Cyclic force-deformation response of Friction Dampers is characterized by rectangular hysteresis loop. The behavior is represented in practice by rigid-perfectly-plastic models. The threshold force at which device starts to deform continuously is called slip-load. The value of this parameter, denoted as P_s , provides a complete definition of idealized model of device. The above description is sufficient to display behavior of friction damper where the elements used to support and connect device to main structural members is considered as rigid. The flexibility of bracings can be introduced in analysis. This is accomplished by considering SR ratio between stiffness k_{bd} of device-brace assembly and structural stiffness k_s . The relationship is given as

 $SR = k_{bd}/k_s$; $k_{bd} = 1/(1/k_d + 1/k_b)$

For a friction element, stiffness k_d of device is considered as infinitely large, i.e., $k_d \approx \infty$ and stiffness k_{bd} of friction assemblage becomes the same as stiffness k_b of supporting bracing. That is,

 $k_{bd} = k_b$; $SR = k_b/k_s$

The slip-load is then related to deformation Δy experienced by device-brace assembly as $P_s = k_{bd} \Delta y = k_b \Delta y$

For design purposes, this equation is expressed in terms of stiffness parameter SR as $P_s = SR \ k_s \Delta y$

This is the basic expression that relates mechanical parameters of friction element. From the equation, it is observed that behavior of friction element is governed by slip load Ps, stiffness ratio SR, and displacement of bracing Δy at which device starts to slip.

Modelling and property definitions of pall friction dampers:

Tension-compression diagonal brace with Pall FD has been modeled as per suggestions available on manufactures website (Pall Dynamics, Canada). Following values have been used to model the damper.

Link type	Mass	Weight	Effective stiffness	Yield strength =slip load	Post yield stiffness ratio	Yielding exponent
-	(kg)	(KN)	(KN/m)	(KN)	-	-
Plastic	429.32	4.2116	23772.853	700	0.0001	10
(wen)						

Fig 7- Pall Friction Dampers, Diagonal and X – bracing

ISSN 2348 - 8034 **Impact Factor- 5.070**

III. **RESULTS**

3.1 Comparision of top storey displacements with and without dampers:

3.2 Storey shear:

Top storey shear Y direction:

ISSN 2348 - 8034 **Impact Factor- 5.070**

3.4 Axial force in columns:

Axial force in columns are more when provided with dampers than without dampers.

3.5 Maximum bending moments and shear forces of beams:

MAX BENDING MOMENT AND SHEAR FORCE OF BEAMS IN							
		ZONE	5				
	FLUID PALL						
	WITHOUT	VISCOUS	FRICTION	VISCOELASTIC			
FORCES	DAMPERS DAMPERS DAMPERS DAMPERS						
B.M M							
MZ							
(KNm)	59.8191	61.84	59.93	59.98			
SHEAR							
FORCE							
FY (KN)	95.945	112.441	96.0407	96.8054			

ISSN 2348 - 8034 Impact Factor- 5.070

MAX BENDING MOMENT AND SHEAR FORCE OF BEAMS IN						
		ZONE	4			
	WITHOUT FLUID PALL VISCOUS FRICTION VISCOELASTIC					
FORCES	DAMPERS	DAMPERS	DAMPERS	DAMPERS		
B.M M						
MZ						
(KNm)	42.0778	48.7716	42.1504	42.18		
SHEAR						
FORCE						
FY (KN)	95.463	112.441	96.0407	96.8054		

MAX BENDING MOMENT AND SHEAR FORCE OF BEAMS IN						
		ZONE	3			
	WITHOUT	FLUID	PALL			
	WITHOUT	VISCOUS	FRICTION	VISCOELASTIC		
FORCES	DAMPERS	DAMPERS	DAMPERS	DAMPERS		
B.M M						
MZ						
(KNm)	42.0778	48.7716	42.1504	42.18		
SHEAR						
FORCE						
FY (KN)	95.945	112.441	96.0407	96.8054		

3.6 Maximum bending moments and shear forces of columns :

MAX BENDING MOMENT AND SHEAR FORCE OF COLUMNS IN							
	ZONE 5						
		FLUID	PALL	VISCO			
	WITHOUT	VISCOUS	FRICTION	ELASTIC			
FORCES	DAMPERS	DAMPERS	DAMPERS	DAMPERS			
B.M.M							
MY							
(KNm)	89.68	94.32	90.65	90.66			
B.M M							
MZ							
(KNm)	103.389	96.53	95.604	85.4245			
SHEAR							
FORCE							
FY (KN)	52.196	55.346	56.973	55.919			
SHEAR							
FORCE							
FZ (KN)	47.824	56.23	48.166	48.7554			

ISSN 2348 - 8034 Impact Factor- 5.070

MAX BENDING MOMENT AND SHEAR FORCE OF COLUMNS IN						
FORCES	WITHOUT DAMPERS	FLUID VISCOUS DAMPERS	4 PALL FRICTION DAMPERS	VISCOELASTIC DAMPERS		
B.M.M MY (KNm)	65.477	76.97	65.935	66.725		
B.M M MZ (KNm)	68.9318	64.38	63.75	56.973		
SHEAR FORCE FY (KN)	39.94	47.08	40.36	41.5294		
SHEAR FORCE FZ (KN)	47.824	56.23	48.166	48.7554		

MAX BENDING MOMENT AND SHEAR FORCE OF COLUMNS IN									
ZONE 3									
		FLUID PALL							
	WITHOUT	VISCOUS	FRICTION	VISCOELASTIC					
FORCES	DAMPERS	DAMPERS	DAMPERS	DAMPERS					
B.M.M									
MY									
(KNm)	65.477	76.97	65.935	66.725					
B.M M									
MZ									
(KNm)	54.0716	52.75	54.05	51.20					
SHEAR									
FORCE									
FY (KN)	39.94	47.08	40.36	41.5294					
SHEAR									
FORCE									
FZ (KN)	47.824	56.23	48.166	48.7554					

3.7 Modal periods and frequencies:

Without dampers

Case	Mode	Period	Frequency	Circular Frequency	Eigenvalue
		sec	cyc/sec	rad/sec	rad ² /sec ²
Modal	1	3.332	0.3	1.8857	3.5559
Modal	2	3.212	0.311	1.956	3.8258
Modal	3	2.927	0.342	2.1469	4.6094
Modal	4	1.087	0.92	5.7782	33.3871
Modal	5	1.048	0.954	5.9954	35.9445
Modal	6	0.956	1.046	6.5741	43.2187

26

ISSN 2348 - 8034 Impact Factor- 5.070

Modal	7	0.626	1.597	10.0321	100.6426
Modal	8	0.602	1.662	10.442	109.0353
Modal	9	0.551	1.816	11.4094	130.1736
Modal	10	0.426	2.35	14.7631	217.9503
Modal	11	0.411	2.435	15.3019	234.1481
Modal	12	0.375	2.664	16.7378	280.1538

Friction dampers

				Circular	
Case	Mode	Period	Frequency	Frequency	Eigenvalue
		sec	cyc/sec	rad/sec	rad ² /sec ²
Modal	1	2.988	0.335	2.1027	4.4214
Modal	2	2.974	0.336	2.1125	4.4629
Modal	3	2.396	0.417	2.6222	6.8761
Modal	4	0.972	1.029	6.4631	41.7721
Modal	5	0.965	1.036	6.5108	42.3903
Modal	6	0.783	1.277	8.0246	64.394
Modal	7	0.556	1.800	11.3087	127.8856
Modal	8	0.549	1.821	11.4408	130.8909
Modal	9	0.447	2.237	14.0539	197.5111
Modal	10	0.382	2.621	16.4694	271.2399
Modal	11	0.377	2.651	16.6566	277.4417
Modal	12	0.31	3.228	20.2792	411.2464

Fluid viscous dampers

G				Circular	
Case	Mode	Period	Frequency	Frequency	Eigenvalue
		sec	cyc/sec	rad/sec	rad ² /sec ²
Modal	1	3.022	0.331	2.0793	4.3235
Modal	2	2.996	0.334	2.0970	4.3975
Modal	3	2.440	0.410	2.5746	6.6286
Modal	4	0.984	1.016	6.3843	40.7595
Modal	5	0.973	1.027	6.4545	41.6600
Modal	6	0.798	1.253	7.8738	61.9963
Modal	7	0.564	1.774	11.1470	124.2563
Modal	8	0.555	1.801	11.3190	128.1194
Modal	9	0.457	2.189	13.7532	189.1496
Modal	10	0.387	2.586	16.2495	264.0456
Modal	11	0.381	2.624	16.4877	271.8451
Modal	12	0.316	3.163	19.8721	394.9003

Viscoelastic dampers

Circular Period Case Mode Frequency Frequency Eigenvalue rad²/sec² sec cyc/sec rad/sec 1 2.768 2.2700 5.1528 Modal 0.361 2 2.707 5.3861 Modal 0.369 2.3208 Modal 3 2.022 0.495 3.1080 9.6596 4 Modal 0.884 1.132 7.1099 50.5507 5 Modal 0.867 1.153 7.2431 52.4632 Modal 6 0.651 1.535 9.6446 93.0190 Modal 7 0.492 2.031 12.7622 162.8744 Modal 8 0.484 2.065 12.9770 168.4032 9 Modal 0.361 2.768 17.3909 302.4432 Modal 10 0.338 2.959 18.5903 345.6009 Modal 11 0.333 3.001 18.8535 355.4534 12 Modal 0.253 3.949 24.8125 615.6588

The fundamental period of vibration was observed to be low when dampers are placed compared to fundamental period without dampers.

IV. CONCLUSION

- The effectiveness of dampers is evident in form of reduced storey responses and stress demands on structural elements and indicates the nature of the dampers are displacement based.
- Maximum displacement of bare frame model without damper is 127mm in X direction and 117.2mm in Y direction.
- By providing dampers, in X direction there is reduction in displacement of 6.34% by providing fluid viscous dampers, 7.05% by providing pall friction dampers, 12.7% by providing viscoelastic dampers.
- In Y direction there is reduction in displacement of 8.47% by providing fluid viscous dampers, 9.21% by providing pall friction dampers, 15.14% by providing viscoelastic dampers.
- Base shear, storey shear and axial force reveals that by use of dampers there is an overall increase in the value of these parameters which implies the ineffectiveness of dampers in reducing the value of these parameters.
- The increase forces in case of building with dampers has lower damaging effects on the structural members as these forces are considerably shared by the damper brace system.
- Even though the dampers have significantly reduced the responses, the damping demand of structure can be further reduced by optimum selection and installation of dampers at various critical locations.

REFERENCES

- 1. A.K.Sinha, Sharad Singh, "SEISMIC PROTECTION OF RC FRAMES USING FRICTION DAMPERS", International Journal of Civil Engineering and Technology (IJCIET), Vol 8, Issue 2, Feb 2017.
- 2. Avtar PALL and R. Tina PALL, "PERFORMANCE-BASED DESIGN USING PALL FRICTION DAMPERS - AN ECONOMICAL DESIGN SOLUTION", 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1955.
- 3. Chindukuri Rama Krishna Reddy, Vaishali G Ghorpade and H.Sudarsana Rao, "ANALYZE AND DESIGN OF A HIGH RISE UNSYMMETRICAL BUILDING WITH DAMPERS", The Asian Review of Civil Engineering, ISSN: 2249 6203 Vol. 6 No.1, 2017.

ISSN 2348 - 8034 Impact Factor- 5.070

ISSN 2348 - 8034 Impact Factor- 5.070

- 4. D.I.Narkhede and R.Sinha, "SHOCK VIBRATION CONTROL OF STRUCTURES USING FLUID VISCOUS DAMPERS", Fifteenth World Conference On Earthquake Engineering.
- 5. Douglas Taylor, Philippe Duflot, "FLUID VISCOUS DAMPERS USED FOR SEISMIC ENERGY DISSIPATION IN STRUCTURES".
- 6. Endrita Mulleti, "SEISMIC RESPONSE OF HIGH RISE BUILDINGS USING FRICTION DAMPER", Feb 2014.
- 7. K.C Chang, T.T.Soong, M.L.Lai (1995), "SEISMIC BEHAVIOR OF STEEL FRAME WITH ADDED VISCOELASTIC DAMPERS", ASCE journal of Structural Engineering, 121, 1418-1426.
- 8. K.C.Chang, Y.Y.Lin, and M.L.Lin, "SEISMIC ANALYSIS AND DESIGN OF STRUCTURES WITH VISCOELASTIC DAMPERS", ISET Journal of Earthquake Technology, Paper No.380, Vol 35, No.4, December 1998.
- 9. M.L.Lai, P.Lu, D.A.Lunsford, K.Kasai, and K.C. Chang, "VISCOELASTIC DAMPER: A DAMPER WITH LINEAR OR NON LINEAR MATERIAL?", Paper No. 795, Eleventh World Conference on Earthquake Engineering.
- 10. M.S.Landge, P.K.Joshi, "SEISMIC PERFORMANCE EVALUATION OF RC BUILDING CONNECTED WITH AND WITHOUT VISCOUS DAMPER", International Journal for Research in Applied Science & Engineering Technology (IJRASET), Volume 5 Issue III, March 2017.
- 11. Shaik Qamaruddin, "SEISMIC RESPONSE STUDY OF MULTI-STORIED REINFORCED CONCRETE BUILDING WITH FLUID VISCOUS DAMPERS".
- 12. Shameena Khannar, M.H.Kolhar, Anjum Algar, "SEISMIC ANALYSIS OF RC STRUCTURES USING FRICTION DAMPERS", International Journal For Research In Applied Science And Engineering Technology, VOL 5, Dec 2017.
- 13. Sherin P. Samuel, Surya Sasidharan, "SEISMIC ANALYSIS OF BUILDINGS USING FLUID VISCOUS DAMPERS", International journal Of Engineering Sciences And Research Technology, April 2017.
- 14. T.T.Soong, B.F.Spencer, "ACTIVE, SEMI-ACTIVE AND HYBRID CONTROL OF STRUCTURES", 12th World conference on Eartquake Engineering.
- 15. Vajreshwari Umachagi, Katta Venkataramana, G. R. Reddy, Rajeev Verma, "APPLICATIONS OF DAMPERS FOR VIBRATION CONTROL OF STRUCTURES: AN OVERVIEW", International Journal of Research in Engineering and Technology (IJRET), Nov 2013.
- 16. Indian Standard CRITERIA FOR EARTHQUAKE RESISTANT DESIGN OF STRUCTURES , IS 1893(Part1)-2002.
- 17. "Prestandard And Commentary For The Seismic Rehabilitation Of Buildings", Federal Emergency Management Agency (FEMA 356/2000).
- 18. Other references, www.google.com.

